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Abstract 

The  community of researchers studying global climate  change is preparing  to  launch the first  Earth 
Observing System (EOS) satellite, EOS AM-1.  The  satellite  will  generate  huge  amounts  of data, 
filling gaps in  the  information  available to address critical questions about Earth's climate.  But 
many  data  handling  and data analysis problems must  be  solved  if  we  are to make  best  use  of  the 
new  measurements.  In  key areas, the experience and  expertise of the statistics community  could  be 
of great help. sfatuhcs rlrcccf rdr h 
1. Introduction /dd;  

The  first Earth Observing System (EOS) platform, EOS  AM-1, is scheduled for launch  into  polar 
orbit  in 1999. It  will  carry five remote sensing instruments designed to  study the surface and 
atmosphere of Earth. In a broad sense, the purpose of  these observations is to find  indications  of 
how Earth's climate is changing, and to discover clues  to  the  mechanisms  that  are  responsible for 
these changes. A 5 to  15  year program of  global  monitoring is planned, involving  measurements 
at  many wavelengths, with  spatial resolutions as  small  as 0.25 km and  temporal  coverage  as 
frequent as daily. Higher  resolution data on regional scales  will also be  acquired. 
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The surface area  of  Earth  is  about 5 x 108 km2. At 0.25 km resolution, a single  instrument 
acquiring 36 channels of data, such as  the  Multi-angle  Imaging  SpectroRadiometer  (MISR) [Diner 
et al., 19981 or the  Moderate  Resolution  Imaging  Spectrometer  (MODIS) [King, et al., 19921 on 
the  EOS  AM-1  satellite,  will  generate upwards of 80 Gbytelday, or 30 Tbytelyear, of basic data. 
The  geophysical  quantities  are  generally  retrieved at lower  spatial resolution, but  must  include 
quality flags and  other  ancillary information, resulting  in a geophysical  data  set  that  will be no 
smaller  than 3 Tbytelyear for the  MISR  instrument  alone. 

The  sheer  volume  of  data  creates  unprecedented  challenges for accomplishing  basic  data  handling 
operations, such as throughput and storage. But  there  are  deeper issues regarding  the  scientific  use 
of such large  data sets. The  EOS  community  has  adopted a partial framework, and  some 
terminology, for discussing the questions we  must face. However, current  approaches  rely 
heavily  upon  the  traditional ways remote sensing satellite  data  have  been  analyzed,  which  make 
little  use of  modern  statistical  techniques. 

This  paper  begins  with a brief  review  of  the  data  classification  scheme  we  use  to  organize our 
thinking  about  data  handling  and analysis. This is  followed  by descriptions of  the current 
approaches  to each of  the  key scientific analysis steps  for  EOS-type data, highlighting  some of  the 
outstanding  statistical issues. The  paper concludes with a summary  of  those issues to  which  the 
statistics  community may  be  well equipped to contribute. 

2. Data Classification Scheme 

The  Committee  on  Data  Management  And  Computing  define  five  general  classes  of  spacecraft  data, 
based  on  the degree of  processmg  involved [CODMAC, 1982, and subsequent refinements]: 

Level 0 -- The raw data stream from the spacecraft, as received at Earth 



Level 1 -- Measured radiances, geometrically and  radiometrically calibrated 

Level 2 -- Geophysical parameters, at  the  highest resolution available 

Level 3 -- Averaged data, providing spatially  and  temporally “uniform” coverage 

Level 4 -- Data produced  by a theoretical model,  possibly  with measurements as inputs 

This paper focuses on  Level 2 and  Level 3 data, which  are  the  main concerns of  most  global 
change research  scientists  working  on EOS instrument  teams. Level 2 products are  reported  on  an 
orbit-by-orbit basis. For a polar-orbiting  satellite such as  EOS AM-1, the  Level 2 sampling of 
Earth is highly  non-uniform  in space and  time,  with  coverage  at  high  latitudes  much  more  frequent 
than  near  the equator. Level 2 data are  needed  when  accuracy  at high spatial  resolution is more 
important  than  uniformity of coverage. These situations  arise  routinely  for  validation  studies of  the 
satellite observations, in  the analysis of  field  campaign  data,  and  when addressing other  local-  and 
regional-scale  problems  with satellite data. 

The  spatially  and  temporally  uniform Level 3 data  are  needed for global-scale  budget  calculations, 
and for any  problem  that involves deriving new  quantities  from two or more  measurements  which 
have  different  sampling  characteristics. The transition  from  Level 2 to Level 3 data  usually 

. involves a substantial  reduction in data volume,  which  is  another  reason  many  researchers  prefer  to 
work  with  Level 3 data when  it is adequate  to  their needs. Level 3 data sets can also be useful as 
guides to the  structure of the  Level 2 data, helping  identify portions of  it for further detailed 
investigation. To derive a Level 3 product from  Level 2 data, scales for spatial  and  temporal 
sampling  must be chosen. We  begin  by discussing Level 2 data processing, with  emphasis  on 
statistical issues. 

3. Level 2 Data 

The  generation of  Level 2 geophysical  quantities from calibrated  reflectances  introduces a diverse 
set  of issues, since  the  algorithms  used  to  derive  these  quantities  vary  greatly  with  the type of 
measurement  made  and  the  retrieval  strategy adopted. For specificity, we use the  MISR  aerosol 
retrieval process [Martonchik et al., 19981 as the basis for the discussion in this section. 

Aerosols  are  micron-sized particles suspended  in  the  atmosphere, whose light  scattering  properties 
are  determined  primarily by  the  particle  size  distribution  (parameterized  by  an  effective  particle 
radius), composition  (represented  by  the  real  and  imaginary parts of  the  particle  index  of 
refraction), and  amount -- a total of 4 quantities. (In  general,  the  parameter  space also includes 
mixes  of  particle size distributions  and compositions, atmospheric  relative humidity, and  surface 
type.)  The  retrieval  algorithm  aims to determine  these 4 properties from satellite  measurements  of 
brightness taken  at 9 angles  and 4 wavelengths (a total  of 36 radiance  measurements per 
geographic location). 

Since  this  is a highly  underdetermined problem, our approach  is  to  simulate  the  reflectances  that 
would  be  measured  for a range of climatologically  likely  aerosol  types  and amounts, and  to  classify 
the  actual observations by comparing  them  with  each  of  the  simulated cases. This amounts to 
comparing  observed  with  climatologically  “expected” values, which  we do using a series of  chi- 
squared-like  quantities. 

Two  MISR-related issues similar  to ones that  arise  elsewhere  are: (1) How to  determine  the 
sensitivity of the instrument to differences in atmospheric  aerosol properties, a part of the process 
of designing the  retrieval itself, and (2) How to create  spatial  and  temporal  summaries of the 
retrieved  geophysical  quantities (what we call  “climatologies”)  based  on  data  from  other  sources, to 
be used  to  validate  the  Level 2 retrieval  results. 



3.1. Sensitivity  Studies 

Sensitivity studies are  done to help  determine  how  fine  a  grid of simulated  aerosol  properties is 
appropriate  to  use  in  the  retrieval. This amounts to asking: “ ‘‘Into  how  many groups can  we  divide 
the  MISR observations based  on the 4 aerosol  properties of interest  (particle size, composition, 
etc.)?”. We  can  divide  data sets having  greater  “information  content”  into  larger  numbers  of 
groups. 

The  sensitivity analysis we are doing for MISR  is  summarized by Kahn et al. [1997; 19981- We 
run  simulations using a  theoretical model, calculating  reflectances  at  the 4 wavelengths  and 9 
viewing  angles  covered by  the MISR  instrument for a  wide  range  of  aerosol size distributions, 
compositions, and amounts. For the purpose of  the  sensitivity study, these  simulations  provide 
data for both  the  “observed”  measurements  and  the  “expected”  reflectances  of  the  cdmparison 
models. 

We designate  the one set  of  simulated  reflectances as the “measured” (observed) case, and  step 
through  “expected”  (comparison)  models covering a  range  of  alternative size distributions, 
compositions, and  amounts. We define 4 test variables to make  the comparisons; for each test, the 
largest of  the 4 test  variables determines the  outcome.  One  test  variable is called yubs: 

where pmeus is  the  simulated  “measurement”  of  atmospheric  equivalent  reflectance  and pcomp is the 
simulated  equivalent  reflectance for the comparison model.  The subscripts I and k index 
wavelength  band  and  camera, N is the number of measurements  included  in  the  calculation, W k  are 

weights, chosen to be  proportional to the  amount  of  atmosphere  seen  by each camera k ,  w- is the 
average  of  weights for all the  measurements  included  in the summation. Dubs is  the  absolute 
calibration  uncertainty  in the equivalent  reflectance for MISR  band I and camera k. 

Comparisons made  using yubs reduce  the  information  contained  in as many as 36 individual 
measurements (4 wavelengths  x 9 angles)  to  a  single  number.  There is more  information  in the 
data. Another  two  ways  to compare cases, that  use other information  in  the reflectances, are: 

which  is  the  maximum  deviation  of  all  the  measurements  used,  and a test  variable  normalized  to the 
measurements  at  the  nadir  (downward looking) angle: 
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Here &pro,Tl (a dimensionless quantity) is the  uncertainty  in  the  camera-to-camera  equivalent 
reflectuuke  ratio: 



ccam(l,k) is the  contribution  of (band I ,  camera k )  to  the  camera-to-camera  relative  calibration 
reflectance uncertainty. Note  that oca, includes the  effects  of  systematic  calibration errors for 
ratios  of  equivalent  reflectance  between cameras, as well  as  random error due to  instrument  noise 
[Bruegge  et al., 19981. For  most  satellite instruments, including MISR, the  relative  calibration 
reflectance  uncertainty  is  expected  to  be  much  smaller  than  absolute uncertainty. A fourth  test 
variable, yspec, is produced by normalizing  the  reflectances to one  of  the spectral bands. 

The  initial  studies  consider  only a dark (ocean) surface, and a single type  of  particle  (rather than a 
mixture). Four independent  variables  are  needed to characterize  the  aerosol  properties  for  the 

Since 4 variables are used  in  comparing  the  measurements  with  the  models (xZabs, x”,,,,, 
and ~ , a x d e v ) ,  this  creates an 8-dimensional space with 4 scalar  elements  at  each  point in the 
domain. 

L L  measurements,”  zgd  another 4 to represent  the  aerosol  properties for the  comparison models. 

Kahn et al. [I9981 developed  an  interactive,  graphical  technique  to  aid our study of  this  high- 
dimensional space. Figure 1 shows several  2-dimensional  slices through the  space  using  this 
technique. The value  of  each 2 variable is represented  by a color from a 3-segment  color bar: a 
logarithmic segment in  shades  of  blue for values below 1.0, another logarithmic segment  in shades 
of red for values greater than 5.0, and a linear segment in  shades  of green, yellow, and  orange for 
values  between 1.0 and 5.0. The 4 2 variables  are  each  normalized, so the  same  scale is 
appropriate for evaluating tests for each of  them. 

In Figure 1, the box for each  test is divided into 5 fields:  one  small  box for each  of  the 4 x2 
variables, and  the background, which is given  the  color of  the largest (most red) of  the 4 test 
variables. The background  indicates  the overall test result,  whereas  the  small boxes indicate  which 
of the 2 variables  determined  that result. In  blue  and  black areas, the  largest  value for all 4 test 
variables is less than 1, indicating  that  the comparison models  are close to the  simulated  MISR 
measurements. Red  areas  indicate comparison models that  are not consistent with  the  MISR 
observations. In general, “blue” regions cover the  range of comparison models in  4-space  that 
would  give acceptable retrievals  for a MISR  observation;  the  larger  the  blue region, the poorer the 
constraint  on  aerosol properties. (One is free  to  choose the criterion for an “acceptable” 
comparison; 2 < 1 corresponds to all shades of blue, 2 < 2 includes some green,  etc.) 

We summarize  the  sensitivity  of  MISR  measurements  to  each  of  the  aerosol  properties  of  interest 
using  bar charts, as illustrated  in  Figure 2. This figure shows the sensitivity  test  results for one 
aerosol property, the  particle size. Each  bar  in  each  panel  of  this  figure answers the question: 
With  all 4 aerosol  properties  of  the  atmosphere fixed, in  the entire  4-dimensional  space  of 
comparison models, what  is  the  largest (and also what is the smallest)  value  of  comparison model 
particle radius that  gives  an  acceptable  match  to  the  atmosphere?  In  this case, an  “acceptable 
match’ means all the 2 variables  are less than 2. The  results  of  this  question  set  the  upper  and 
lower  limits of each bar. 

From  the entire exercise, we concluded [Kahn et al., I9981 that the instrument is sensitive to  about 
3 sizes  and 2 compositional  types of  particles (a total  of 6 “groups” -- small, medium, and I q e ;  
dirty  and  clean -- which we  call  the “underwear” model). The sensitivity study provides us with 
some  notion  of  the  “power”  of  our  test:  the  ability to  reject  incorrect hypotheses concerning the 
nature  of  aerosol properties. It is  not a true power calculation,  because no distribution is imposed 



on  the  space  of  "observed" aerosol properties. Nevertheless, these studies provide  a  means of 
assessing  the  discriminatory capability of our methodology. 

3.2. Climatologies  and  Validation  Studies 

The  Level 2 retrieval  algorithms for EOS must run in an automatic mode, rapidly  processing  huge 
amounts  of  data  at  computing  facilities far from the  purview  of  the  instrument  teams. As a first 
step in  understanding  the  results,  we  plan to automatically  compare  them  with I'  the  expectations" -- 
a  climatology  initially  based  on  the  best data available  prior to launch. 

Consider  the  aerosol  climatology  we  will  use to validate MISR data. The  quantities of  interest  are 
the aerosol  column  amount  and  the  aerosol ?ype", which  summarizes  particle composition, size 
distribution, and shape. We  need both type  and  amount  because  the  effect  of  aerosols  on  the  heat 
balance  of  Earth,  as  represented in climate models,  depends  upon both the  aerosol  amount and, for 
example, how dark or light  the  particles  are  relative to the  underlying surface. There  exist  global 
satellite  estimates  of  aerosol  amount  at 1 km resolution, over oceans only, on  a  weekly basis for 
more  than  seven  years [Stowe et al., 19971. For  these observations, particle type is assumed. 
There  are  global  models  giving  the distributions of  the main types  of particles, reported  at  spatial 
scales around 500 km, on  a  monthly basis [Tegen et al., 19971. Numerous in  situ observations 
have also been made, with every conceivable  spatial  and  temporal sampling. Some observers 
report  aerosol  amount,  others provide information about  aerosol type, and a few include  both. 

How do we  merge  all  these  data into a  "climatology?" Currently, we  take  the  global  satellite  data 
set as the  initial  estimate of aerosol  amount  over  ocean.  We  then  use  the  global  models  to  establish 
ratios  of  different  aerosol types, on a region-by-region basis, and to fill  in  the  aerosol  amount over 
land (Figure 3). 

We  plan  to  use in  situ measurements, where  available, to improve  the constraints placed  by  the 
global  data sets. We  will  experiment  with  ways  to  weight  the information from different  data 
sources  based  on  our judgment of  their reliability. We  must  also develop an  algorithm  to  compare 
the aerosol  properties  derived from the  new  satellite  data  with  the climatology, and to assign  a 
measure of consistency  between  the  two. 

We  will find pragmatic,  though  not  necessarily optimal, ways  to address each of these  issues.  Our 
inclination is to  take  a  more  or less Bayesian  approach to improving  global  climatologies  with  data 
from in  situ measurements. Promising work  in  the  area  of  combining  data sets having  different 
spatial  resolutions  has  been discussed by Gabrosek et al. 119981. An approach  similar to  that 
adopted for improving  climatologies  will be  taken for validating  the MISR aerosol products 
themselves, using  contemporaneous  field  and  aircraft  measurements to assess the  quality  of  the 
satellite-derived  quantities. 

4. Level 3 Data 

Having  reviewed  how  Level 2 data are  currently  produced  and validated, we turn to  the  problem  of 
creating  Level 3 data.  The  goal  of  Level 3 data  is  to  provide  geophysical  quantities with spatially 
and  temporally  "uniform" coverage. They  usually also offer a vast  reduction in data  volume  from 
typical  Level 2 satellite  remote sensing products. To produce  a  Level 3 data set, a spatial  and 
temporal  grid is chosen, and  a  "binning"  algorithm  is  adopted  to assign values  to  each  grid  cell 
based  on  Level 2 data. 

4.1. Global Grids for Level 3 Data 



The  standard  EOS  Level 3 grid divides Earth  into cells l o  latitude by 1 O longitude in size [Sellers et . 
al., 19951. This "equi-angular"  global  grid  is currently the  most  popular  one  for  Level 3 products, 
regardless of  the  characteristics  of  the  underlying  Level 2 data. A degree  of  latitude  is  about 112 
kilometers, so cells  are  sometimes sub-divided into 0.5" by 0.5" or 0.25" by 0.25" sub-cells if 
higher  spatial  resolution  is desired. But a degree  of  longitude  varies in size  from  about  112 
kilometers  near  the  equator to 0 at  the poles, which  raises  several  of the issues encountered  when , 

this sort of grid is used  to  produce global Level 3 data. 

One  limitation of equal  angle grids is that  they  have  singularities  at  the poles, causing distortions at 
high  latitudes  that  are  unacceptable for many  types  of  polar-region studies. A related  problem  is: 
when such grids are  subdivided to accommodate  high  spatial  resolution data, as is often done to 
represent  land surface properties, grid cells at  the  high  latitude end of the region-of-interest  are 
unacceptably  small  relative  to  those  at  the  low  latitude end. As a consequence of these  limitations,  it 
is  customary to use discipline-specific grids for polar and for land surface studies. The  equal-angle 
approach does not  produce a global  grid  with  which  one  can  perform effective analyses  on  both 
high  and  low  latitude data, or high and low  spatial  resolution data. This issue is becoming 
increasingly  significant  as  we  begin to collect  global-scale  satellite  data sets with  the  goal of 
addressing global-scale questions. 

For many geophysical problems, it is also desirable to have  cells  of  equal area. Equal-area grids 
make  it  easier to calculate inventories of  spatially  extensive quantities, such as cloud amount, 
vegetation cover, or snow extent, and to quantitatively assess changes in  these  quantities,  since 
each  cell  receives  equal  area weighting. An equal  area  grid is needed  to  produce  spatially  and 
temporally  uniform  Level 3 representations of  the  distribution  of  measured  values  and  density  of 
sampling,.especially when  many Level 2 measurements  are  aggregated into a single  cell. 

The  anisotropy  created by  any  rectangular grid, such as the comnionly used equal-angle grid, 
presents an  additional  obstacle for studies that  involve  calculating gradients, fluxes, and  other 
quantities calculated  using finite differences [e.g., Kahn  et al., 19911, as well  as for the  modeling 
of errors [Cressie, 19931. Some neighboring cells in a rectangular  grid share an edge, whereas 
others share only a point. There is  no general rule for weighting  the  contributions  of  each type of 
neighbor. Only  zonal  (along-latitude)  gradients  can  be  calculated  in a consistent  way  on a global 
scale;  even  in  the  meridional direction, the  north-south  cell  boundaries  are  usually  aligned  only 
along one meridian. 

Some promising  alternatives to the standard equal-angle  grid  are  currently  under  investigation. We 
are  aware  of studies based  on  triangle or hexagon subdivisions of  the spherical  surface or a 
projection thereof, that  may  alleviate  many  of  these issues [Kimerling  et  al., 1998; Can- et al., 
19981. A considerable  body  of  work exists that explores the characteristics  of such grids [e.g., 
White  et al., 1992; 1998; Kimerling  et al., 19981. Much  of  this  work focuses on  tessellations  of 
the sphere using a regular icosaherdon. Grids can  be  defined so that  all  cells  have  equal area, and 
with  no singularities at  the  poles or elsewhere. For  hexagonal grids, all neighbors share an edge, 
and  the  distance  between  centroids  of neighbors can  be  nearly equal. In addition, congruently 
nested systems of such grids are possible, producing subdivisions with  similar  geometric 
properties  as  the  parent grid, but representing global  coverage  at  higher  spatial  resolution. 

However, more  work  needs  to  be  done  before such grids offer  practical  alternatives. No single 
choice of grid  scheme  provides  all of  the desirable  characteristics in equal measure. For  example, 
if equal  area for all cells is  rigorously enforced, disparities  occur in  the  inter-cell distances. The 
tradeoffs  must  be  evaluated  and  optimal choices made. 

Efficient  algorithms for addressing  and storing data  at  multiple  levels  within a grid system, as well 
as fast  translators to  and  from  commonly  used systems such as the equal-angle, latitude-longitude 
grid,  must  be  developed.  Methods  are  needed  for  selecting a "native" grid  size  for a given  data set, 
and  for  aggregating  and disaggregating grids at various  spatial resolutions. And questions must 
also be addressed  concerning  how well, in a statistical sense, ( 1 )  a Level 3 product  generated  on 
such a grid  system, (2) aggregated  or  dis-aggregated  values of the  product at other  spatial  scales in 



the nested system, and ( 3 )  finite-difference  quantities  calculated  from  neighboring cells, represent . 
the Level 2 data  from  which  they  were derived. 

4.2. Level 3 “Binning” Algorithms 

In addition  to the  variety  of possible grid choices, a binning  algorithm  must be selected.  The 
binning  algorithm  produces a summary of  Level 2 data  belonging to each  Level 3 grid cell. It is 
important  to  recognize  that this procedure is a statistical  one.  What  we know about the Earth  from 
the data is  captured by  Level 2. Level 3 is a data  reduction: a version  that seeks to  reduce  data 
volume  while  preserving  important  magnitudes  and relationships. Currently, the  most  common 
choice for a Level 3 algorithm is to report means  and  standard  deviations of all  Level 2 data  points 
falling into a Level 3 cell, possibly trimming  outliers or measurements  flagged  as  being  of low 
quality. Typically, all  points  included  in  the  grid  cell  average  are  given  equal weight. Occasionally 
medians  are  used  instead of means. 

While this approach  reduces  data  volume significantly, it also reduces  information content. 
Aggregating  over  space  and  time  in this way  threatens  to  average  out relationships existing at 
higher levels of spatial  and  temporal resolution. Also, the  aggregation is usually  done  variable  by 
variable, preserving  no  information  about covariation. In  short, these choices preclude use  of  Level 
3 data for inferential  purposes  in all but a very  restricted  class of applications. 

Most researchers who work  with  satellite  data sets are  interested  in  the  geophysical  properties  of 
Earth. But  carrying  inferences  back to the  geophysical  characteristics  require assumptions about 
the relationship  between  Level 2 and  the  phenomena of  which  it is a sample. These relationships 
are  sometimes  well  described  by  the  physical  theory  employed in creating  Level 2; inference 
requires statistical  models to quantify  remaining  uncertainty.  There  is no commonly  agreed-upon 
way to select  among  the possible statistical assumptions; the  choice  often depends upon  the 
particular  research  problem,  and  the experience and  opinions  of  the researchers. 

With  respect  to  making  inferences  about  geophysical  properties  of  Earth from Level 3 data, two 
levels  of  statistical  models  are  needed: one to  relate  Level 2 to  Earth (instrument sampling, etc.), 
and  one to distill  Level 2 into  Level 3. Distinguishing  these  two steps is useful because  it  allows 
us  to focus on  the  empirical  distribution  of  Level 2, which  can  be studied with  fewer  restrictive 
assumptions, and  leaves  researchers  free to make  their  own assumptions about its relationship  to 
Earth. 

Improved  Level 3 data  products  might  preserve  more  characteristics of the  empirical  distribution  of 
the  Level 2 data  set  than just the  (marginal)  means  and  standard deviations. Techniques  of 
multivariate  non-parametric  density  estimation  that  preserve  covariance  relations as well as spatial- 
temporal  dependence may  be useful. Standard methods  are  probably  not  practical for this 
application,  because of  the  high data volume.  One  approach may  be to investigate  ways of creating 
estimates based  on  samples of Level 2 data. Other  promising  ideas may come from current  work 
in the area of  quantization  and data compression [e.g., Chou et al., 19891. 

5. Summary of Issues 

This  paper  concentrates  on  matters of  potential  interest  to  the  statistics  community  that  relate to  the 
generation of Level 2 and  Level 3 data  from  satellite  remote  sensing instruments, such as the ones 
scheduled to fly as part  of  the EOS. Table 1 is a summary  of  the issues raised  to  which the 
statistics  community may be well-equipped  to contribute. For  Level 3 data, the  main issues  are: 
defining an effective  system of  nested grids, deriving procedures  for  ingesting  Level 2 data  into  the 
system,  and  developing  algorithms  for  aggregating  and  translating data that  is in the system. Level 
2 data  presents a more diverse  set of issues; we focused on performing  sensitivity  studies  and 
developing  climatologies. 



The  EOS  community is  preparing to derive  geophysical  quantities from measurements that should . 
begin appearing in 1999.  All  being  well,  we  will soon face the challenges of  actually  studying  the 
data, summarizing the trends,  identifying  and  characterizing the exceptions, and  exploring the 
implications of  the results  for further data acquisition, and  for  global climate change. We  will  find 
practical  ways to implement each of the  required steps for the massive data sets we  anticipate.  But 
we  will do a better job if an active  community of statisticians, aware of Earth scientists' needs  and , 

constraints, participates. 
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TABLE 1. Summary of Issues Raised in Creating Level 2 
and Level 3 Data 

General Data Processing -- 
Throughput, Storage, and  Distribution  of  Massive  Data Sets 
Sorting and  Searching  Massive Data Sets Referenced  to Time and  Geographic  Location 
Documenting  Assumptions  and Constraints 

Sensitivity  Studies -- 
Choice of  Metrics to Assess  the  Agreement  between  Observed  and Expected Cases 
Strategy for Exploring Cases in  Multi-Dimensional  Space 
Data  Visualization  Techniques for Analyzing  and  Reporting  Results 

Climatologies  and  Validation  Studies -- 
Approach to Combining  Model-Based  and  Observational  Constraints 
Approach to Combining  Constraints  having  Different  Spatial Scales 

(e.g., Satellite Remote Sensing, Aircraft, and In Situ) 
Approach to Comparing  Geophysical  Quantities  Derived  at  Different Spatial Scales 

(e.g., Satellite Remote Sensing, Aircraft, and In Situ) 
Approach to Applying  "Climatological  Constraints"  to  Data  from Satellite Retrievals 

Creating Level 3 Data -- 
Choice of  Nested  Grid System and  Associated  Software 
Binning  Algorithm  (Continuous-  and  Discrete-Valued  Quantities) 
Measures of Certainty for Comparisons Among  Level 3 Products 

Studying the Observations -- 
Describing  Trends  in  the  Data  at all Levels 
Identifying and  Characterizing Exceptions (surprises) 
Assessing  and  Reporting  Data  Quality 



Figure Captions 

Figure 1. Example  of  a  comparison matrix. Each  panel shows the results of  tests 
between  an  atmosphere  containing  one  type of atmospheric  particle (i.e., all 4 aerosol 
properties  are fixed), and 800 comparison models, covering ranges of aerosol  amount 
( T ~ ~ ~ , , , ~ )  and  size (rcomp). The 4 panels  show tests for atmospheres  with 4 different  aerosol 
amounts (T,,,~,) [from Kahn et al., 19981. 

Figure 2. Bar chart showing the ranges of particle radius (rc) for comparison  models  that 
give  acceptable  matches to an  atmosphere  with  accumulation  mode  particles  having  selected 
values  of  real  and  imaginary indices of  refraction. For an  acceptable match, all four 2 test 
variables  must  fall  between 0 and 2. Bars are  produced for 8 choices  of  atmospheric 
particle radius (ra). For each ra, a group of 4 bars is produced, corresponding to 4 choices 
of atmospheric aerosol amount (7,). As shading increases, the bars represent values of 7, 
increasing from 0.05 to 0.1, 0.5, and 1.0. Each  panel represents a  different  choice  of 
atmospheric  real (nr,) and  imaginary (ni,) index of refraction [from Kahn et al., 19981. 

Figure 3. Strategy for developing the MISR Aerosol Climatology. 
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erosol ,- ." -.%\ Region-by-Region  Comparison: model 
If the models  indicate that aerosol type is different  from  the sulfate 
assumed in the AVHRl retrieval, the model  results will be  favored, 
and the A V M R  optical  depth  may  need to be scaled  for  a  different 
part icle type. 
If the models  disagree  among themselves, or with the AVHRl data, 
about  optical  depth, the AVHFW result will be favored,  possibly 
scaled to account  for  particle type and  calibration. 
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figure 3. Application of Constraints for Tropospheric Aerosol Ctimatolog y 


